Assimilation of Aerosol Optical Depth (AOD) retrievals and PM2.5 in NCEP's Next-Generation Regional Air Quality Forecasting System

Hongli Wang^{*1,2}, Stephen Weygandt², Mariusz Pagowski^{1,2}, Ruifang Li^{1,2}, Raffaele Montuoro^{1,2}, Quanhua Liu³, Cheng Dang⁴, Yingtao Ma^{3,5}, Rajesh Kumar⁶, Shobha Kondragunta³, Cory Martin⁷, Jianping Huang⁸, Jeffery Mcqueen⁹, Ivanka Stajner⁹, and Brian Hughes⁸

 ¹Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder – Boulder, CO, United States
²NOAA Global Systems Laboratory – Boulder, CO, United States
³NOAA NESDIS STAR – College Park, MD, United States
⁴UCAR Joint Center for Satellite Data Assimilation – Boulder, CO, United States
⁵CSU CIRA – Fort Collins, CO, United States
⁶NCAR RAL – Boulder, CO, United States
⁷Redline at NOAA/NWS/NCEP/EMC – College Park, MD, United States
⁸IMSG at NOAA/NWS/NCEP/EMC – College Park, MD, United States
⁹NOAA/NWS/NCEP/EMC – College Park, MD, United States

Abstract

Wildfires provide a major source of emissions contributing to poor air quality in the United States. Current operational models at the National Centers for Environmental Prediction (NCEP) show large uncertainties in the analysis and prediction of wildfire emissions with respect to emission strength, composition, duration, diurnal evolution, as well as to what altitude smoke plumes rise. This presentation describes efforts to improve wildfire smoke forecasting capabilities for air quality applications by assimilating satellite retrievals of Aerosol Optical Depth (AOD) and PM2.5 in-situ measurements into NCEP's Next-Generation Regional Air Quality Forecasting System, which consists of a Limited Area Model version of FV3 (FV3LAM) coupled with the Community Multi-scale Air Quality Model (CMAQ) to provide inline atmospheric chemistry.

The ability to assimilate AOD and PM2.5 has been developed for FV3LAM-CMAQ within the Gridpoint Statistical Interpretation (GSI) 3-dimensional variational data assimilation system (3DVar). The Community Radiative Transfer Model (CRTM) AOD module is used as an observation operator for AOD assimilation. The control variables are individual aerosol species, with associated background error statistics derived via the NMC method. The diurnal variations of background error statistics are examined and discussed. The VIIRS smoke and dust mask products are used to help produce physically reasonable aerosol analysis increments in smoke and dust areas. The performance of the developed GSI 3DVar data assimilation system will be presented and limitations will be discussed.

*Speaker

Keywords: Data assimilation, Air quality forecast, FV3 limited area model, CMAQ, AOD, PM2.5