Big Data Assimilation: Real-time Demonstration Experiments of 30-second-update Forecasting in Tokyo in 2020 and 2021

Takemasa Miyoshi∗1,2,3,4, Takumi Honda1, Arata Amemiya1, Shigenori Otsuka1, Yasumitsu Maejima1, James Taylor1, Hirofumi Tomita1, Seiya Nishizawa1, Kenta Sueki1, Tsuyoshi Yamaura1, Yutaka Ishikawa5, Shinsuke Satoh6, Tomoo Ushio7, Kana Koike8, Erika Hoshi8, and Kengo Nakajima9

1RIKEN Center for Computational Science [Kobe] – 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Japan
2RIKEN Cluster for Pioneering Research – Kobe, Japan
3RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program – Kobe, Japan
4Japan Agency for Marine-Earth Science and Technology – 2-15, Natsushima-cho, Yokosuka-shi, Kanagawa, Japan, Japan
5National Institute of Informatics – 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
6National Institute of Information and Communications Technology [Tokyo, Japan] – 4-2-1 Nukui-Kitamachi, Koganei, Tokyo 184-8795 Japan, Japan
7Osaka University – 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
8MTI, Ltd. – Tokyo, Japan
9Information Technology Center, The University of Tokyo – Tokyo, Japan

Abstract

The Japan’s Big Data Assimilation (BDA) project started in October 2013 and ended its 5.5-year period in March 2019. Here, we developed a novel numerical weather prediction (NWP) system at 100-m resolution updated every 30 seconds for precise prediction of individual convective clouds. This system was designed to fully take advantage of the phased array weather radar (PAWR) which observes reflectivity and Doppler velocity at 30-second frequency for 100 elevation angles at 100-m range resolution. By the end of the 5.5-year project period, we achieved less than 30-second computational time using the Japan’s flagship K computer for past cases with all input data such as boundary conditions and observation data being ready to use. The direct follow-on project started in April 2019. We continued the development to achieve real-time operations of this novel 30-second-update NWP system for demonstration at the time of the Tokyo 2020 Olympic and Paralympic games. The games were postponed, but the project achieved successful real-time demonstration of the 30-second-update NWP system at 500-m resolution during July 31 and August 7, 2020 using a powerful supercomputer called Oakforest-PACS operated jointly by the Tsukuba University and the University of Tokyo. This presentation will summarize the real-time demonstration in 2020 and early results from the planned 2021 experiment during the Tokyo 2021 games using the world’s leading supercomputer Fugaku.

∗Speaker
Keywords: ensemble Kalman filter, phased array weather radar, radar data assimilation