Reduced non-Gaussianity by 30-second rapid update in convective-scale numerical weather prediction

Juan Ruiz^{*†1,2}, Guo-Yuan Lien³, Keiichi Kondo⁴, Shigenori Otsuka⁵, and Takemasa Miyoshi^{‡6,7,8,9,10}

¹Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Avda. Rivadavia 1917 - CP C1033AAJ - Cdad. de Buenos Aires, Argentina

²University of Buenos Aires [Argentina] – Cordoba 430, 1053 Buenos Aires., Argentina

³Central Weather Bureau – 64, Gongyuan Road, Taipei, Taiwan

⁴Meteorological Research Institute – Tsukuba, Japan

⁵RIKEN Center for Computational Science [Kobe] – 7 Chome-1-26 Minatojima Minamimachi, Chuo Ward, Kobe, Hyogo 650-0047, Japon, Japan

⁶RIKEN Center for Computational Science [Kobe] – 7-1-26 Minatojima-minami-machi, Chuo-ku, Kobe, Japan

⁷RIKEN Cluster for Pioneering Research – Kobe, Japan

⁸RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program – Kobe, Japan

⁹University of Maryland, College Park – United States

¹⁰Japan Agency for Marine-Earth Science and Technology – 2-15, Natsushima-cho, Yokosuka-shi,

Kanagawa, Japan, Japan

Abstract

Non-Gaussian forecast error is a challenge for ensemble-based data assimilation (DA), particularly for more nonlinear convective dynamics. This study investigates the degree of non-Gaussianity of forecast error distributions at 1-km resolution using a 1000-member ensemble Kalman filter, and how it is affected by the DA update frequency and observation number. Regional numerical weather prediction experiments are performed with the SCALE (Scalable Computing for Advanced Library and Environment) model and the LETKF (Local Ensemble Transform Kalman Filter) assimilating every-30-second phased array radar observations. The results show that non-Gaussianity develops rapidly within convective clouds and is sensitive to the DA frequency and the number of assimilated observations. The non-Gaussianity is reduced by up to 40% when the assimilation window is shortened from 5 minutes to 30 seconds, particularly for vertical velocity and radar reflectivity. Also, short-range forecasts confirm the beneficial impact of reducing the length of the assimilation window to assimilate phased-array radar observations.

 ${\bf Keywords:} \ {\rm non, \ gaussianity, \ rapid, \ update, \ mesoscale \ data \ assimilation}$

*Speaker

[†]Corresponding author: jruiz@cima.fcen.uba.ar

[‡]Corresponding author: takemasa.miyoshi@riken.jp