A novel regional reanalysis of dust aerosols

Enza Di Tomaso^{*1}, Jeronimo Escribano¹, Sara Basart¹, Paul Ginoux², Francesca Macchia¹, Francesca Barnaba³, Francesco Benincasa¹, Pierre-Antoine Bretonnière¹, Arnau Buñuel¹, Miguel Castrillo¹, Paola Formenti⁴, Maria Gonçalves¹, Oriol Jorba¹, Martina Klose⁵, Lucia Mona⁶, Gilbert Montané¹, Michail Mytilinaios⁶, Vincenzo Obiso⁷, Miriam Olid¹, Nick Schutgens⁸, Athanasios Votsis^{9,10}, Ernest Werner¹¹, and Carlos Pérez García-Pando^{1,12}

¹Barcelona Supercomputing Center (BSC) – Torre Girona c/ Jordi Girona, 31, 08034 Barcelona, Spain ²NOAA Geophysical Fluid Dynamics Laboratory – Princeton University, Forrestal Campus, 201

Forrestal Road, Princeton, NJ 08540-6649, United States

³CNR Institute of Atmospheric Sciences and Climate – -, Italy

⁴Laboratoire Imagerie et Systèmes dÁcquisition – Commissariat à l'énergie atomique et aux énergies alternatives : DRT/DTBS/STD/LISA – -, France

 $^5 {\rm Karlsruhe}$ Institute of Technology (KIT), Institut für Meteorologie und Klimaforschung -

Troposphärenforschung – Karlsruhe, Germany

 $^6 {\rm Consiglio}$ Nazionale delle Ricerche-Istituto di Metodologie per l'Analisi Ambientale (CNR-IMAA) – -, Italy

⁷NASA Goddard Institute for Space Studies – 2880 Broadway, New York, NY 10025, United States

⁸Department of Earth Science, Vrije Universiteit Amsterdam – 1081 HV Amsterdam, Netherlands

⁹University of Twente, Department of Governance and Technology for Sustainability (BMS-CSTM) – -, Netherlands

¹⁰Finnish Meteorological Institute – Erik Palmenin aukio 1, P.O. Box 503, 00 101 Helsinki, Finland, Finland

¹¹Agencia Estatal de Meteorología – Madrid, Spain

¹²Institució Catalana de Recerca i Estudis Avançats – Passeig Lluís Companys 23, 08010 Barcelona, Spain

Abstract

We present a regional reanalysis of dust aerosols which has been recently released by the Barcelona Supercomputing Center for a 10-year period and at the high spatial resolution of 0.1°. The reanalysis has been obtained by ingesting an innovative dust optical depth data set, derived from the MODIS Deep Blue products, in the dust module of the MONARCH atmospheric model by means of a LETKF with a four-dimensional extension.

We outline the different modelling, observational and assimilation aspects related with the production of the reanalysis, whose unprecedented high resolution has required the use of advanced computing and workflow strategies, which are also described.

By providing an accurate and complete reconstruction of dust for a recent decade, this novel

^{*}Speaker

reanalysis yields useful information to support operational early warning systems, as well as the development and refinement of environmental monitoring and mitigation strategies, in line with the mission of the WMO Sand and Dust Storm Warning Advisory and Assessment System.

Acknowledgment

The authors acknowledge co-funding from the H2020 ERA-net ERA4CS (GA 690462) as part of the project DustClim; HPC access from PRACE (eDUST/eFRAGMENT1/eFRAGMENT2) and RES (AECT-2020-3-0013/AECT-2019-3-0001/AECT-2020-1-0007). Carlos Pérez García-Pando acknowledges support from the ERC (GA 773051) and the AXA Research Fund.

Keywords: regional reanalysis, mineral dust, aerosol optical depth, high resolution, ensemble data assimilation.